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LEITER TO THE EDITOR 

Phase-space representation for Galilean quantum particles of 
arbitrary spin 

JosC M Gracia-Bondia and Joseph C Varilly 
Escuela de Matemitica, Universidad de Costa Rica, San Jose, Costa Rica 

Received 7 July 1988 

Abstract. The phase-space approach to quantisation is extended to incorporate spinning 
particles with Galilean symmetry. The appropriate phase space is the coadjoint orbit 
R6 x S2. From two basic principles, traciality and Galilean covariance, the Weyl symbol 
calculus is constructed. Then the Galilean-equivariant twisted products of functions on 
this phase space are identified. 

In the conventional description, the states of a quantum-mechanical non-relativistic 
particle are identified with elements of the Hilbert space XI = C2’”0 L2(R3, d t ) .  Since 
the pioneering work by Weyl [l], Wigner [2] and, foremost, Moyal [3] phase-space 
realisations of such a physical system, for j = 0, have attracted considerable attention. 
In this letter we extend the phase-space approach to cover spinning particles as well, 
within the framework of non-relativistic mechanics. 

Let S2 denote the manifold of states of a ‘classical spin’, i.e. the sphere. Let U’ 
be a physical (i.e. projective) unitary representation of the Galilei group G on X’, 
write g . A:  = U’(g)AU’(g- ’ )  for any operator A on X’, and let g U denote the action 
of G on the phase space R6 x S2,  with coordinates U :  = (4, p ;  n ) .  By a ‘Stratonovich- 
Weyl correspondence’ we mean a rule assigning to every operator A a function WA 
on the phase space R6 x S2,  satisfying the following postulates. 

( a )  The correspondence is linear and one-to-one. 
( b )  Self-adjoint operators are mapped into real functions. 
( c )  The identity operator is mapped into the constant function 1. 
( d )  Traciality. For a suitable multiple dp’ of the ordinary measure on R6 x S 2 ,  the 

( e )  Covariance: Wg.A( U )  = wA(g-’*u) for g E G, U E R6 x S2.  
The problem of finding a Stratonovich-Weyl correspondence for a Galilean particle 

with arbitrary spin has an essentially unique solution. We collect first the necessary 
formulae for the Galilei group. LCvy-Leblond’s notation [4] is employed throughout. 
A Galilean transformation, defined by (6 ,  a, U, R ) ( x ,  t ) :  = (Rr + ut + a, t + 6 ) ,  where 
b E R, a, U E R3, R E SO(3) and (x, t )  are spacetime coordinates, has inverse 
( b ,  a, U, R ) - ’ = ( - b ,  R - ’ ( b u - a ) ,  -R-’u ,  R - I ) .  It acts on phase space [5] by 

equation WA(u) WB(u)dp’(u) = Tr AB holds whenever both sides make sense. 

( b , a , v , R ) . ( q , p ; n ) : =  R q - - p  + a - b u , R p + m u , R n  . (1) ( (  I )  ) 
Here m is the mass of the particle. 

It is well known that the projective representations of 6, the covering group of G ,  
are obtained from linear representations of a ‘splitting group’ Ci by passing to the 
quotient. The corresponding multiplier representations (which we will denote also by 
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U’) act on X’ (which can be thought of as momentum space for thej-spin particle) by 

[ U’( b, a, v, r? )@Is ( 5) : = exp [ - f a  a + f ma- v 9:f ( r? )@ ( R - I  ( f - mv) ) R 2m )1 f ’ - J  

(2) 

where r? E SU(2), the covering group of S0(3 ) ,  R is the rotation matrix corresponding 
to I?: and the 9a(,(l?) are the usual matrix elements (js17rj(8)ljt) [ 6 ] ,  where 7rj denotes 
the irreducible representation of SU (2) on C””, s = -j, . . . , j - 1, j .  

The system of factors is 

1 
o,(g,  8’) = z ( - b ’ v -  Rv‘+ v . R a ’ - a *  Rv’) 

if g = ( 6 ,  a, U, d ) ,  g’= (b’, a’, v’, I?:‘) belong to 6. It restricts nicely to the exponent of 
the canonical commutation relations i n  Weyl form [ 13 on considering the subgroup 
of 6 of elements such that b =0, R = I .  We note that (1) comes naturally from 
Kirillov-Souriau theory [7, 81, as R 6 x S 2  is an orbit of the coadjoint action of e, 
corresponding to a Casimir element m > 0. 

By condition ( a ) ,  we may write 

WA( U )  = Tr(ATJ( U ) )  

for some operator-valued function r’ on R6 x S2.  Now, by the tracial condition ( d ) :  

Tr AB= WA(U)WB(u)dk’(u) = Tr(ATj(u)) WB(u)dp’(u) I J 
= Tr( A 1 WE( u)Tj( u)dwJ( U)) 

which implies 

B = WB(u)I”( u)dp’( U )  for any B. J 
Thus the tracial condition, which is obviously imposed to assure the equality of standard 
quantum-mechanical and phase-space averages, has the important consequence that 
the correspondence A* W, can be implemented with the same operator kernel TJ. 

We now show that T’( U )  is a tensor product of operators A’( n) acting on C”” and 
n ( q , p )  acting on L2(R3, dg):  I”(q, p ;  n) = A’(n)OII (q ,p ) .  Introduce the following 
functions over the sphere: 

where YIm denotes the usual spherical harmonics and (Jr(s  - r)l js)  is a Clebsch-Gordan 
coefficient. Using the well known formula [6] for transforming spherical harmonics: 
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one derives [9], after some calculation, 

Z + , ( R n )  = f: ,2KP( E) 93 ri n 1. 
P.4= U -J 

Define 

A J ( ~ ) :  = zJ,r(n)ljr)(jsl. 
r,r = -J 

As Z:, = z’,,, the AJ are self-adjoint. One computes easily that 

(4) 

Tr AJ(n) = 1 ( 5 a )  

4a 2J I 4lr 
Tr(AJ(m)A’(n))=- c Y l , ( m ) Y t ( n ) = :  - K’(m, n). ( 5 b )  

2/ + 1 I = O  s = - l  2 j +  1 

Here K J  is the reproducing kernel of the space of spherical harmonics of degree 6 2 j .  
Now introduce 

2i 
r u g ,  P ) W )  := 23 exp(; 4 * (P  - 5 ) ) W P  - 5 )  

and compute [ lo ,  111 

T a g ,  P) = 1 

Tr(W9, P)W4‘, P’)) = (2.rrW3S(9 - 4’)S(P -P’). 

(6a  1 

( 6 b )  

We note that the geometrical meaning of the n(q, p) as reflection operators was only 
uncovered some years ago by Grossmann [12] and Royer [13]. It is easily seen that 
the n(q, p )  are self-adjoint. 

From ( 5 )  and (6) it follows that the T’(u) =AJ(n)OII(q,p) are self-adjoint and 

TrI”(u) = 1 ( 7 a )  

( 7 b )  
41r 

Tr(rJ(u)rJ(u’)) = - ( 2 ~ h ) ~ ~ ’ ( u - u ’ )  
2J + 1 

with an obvious meaning for SJ(u  - U’). 

conditions for the family of operators T J ( u ) :  
Now, our initial set of postulates is readily seen to translate into the following 

(i)  the T J ( u )  are self-adjoint; 
(ii) j R b x S 2  rJ( u)dp’( U )  = I; 
(iii) j R b x S 2  Tr( rJ ( U )rJ ( u’))rJ ( u’)dpJ ( U’) = rJ ( U); 
(iv) T J ( g * u ) =  U J ( g ) T J ( u ) U J ( g ) - ’ ,  whenever g = ( b , a ,  U, E ) E ~  and g . u  is given 

Taking 
by (l), with R being the rotation determined by R E SU (2). 

2 j +  1 
41r 

dpJ (u )  = ( 2 r r f i p  - dq dp  dn 

conditions (ii) and (iii) follow from ( 7 ) .  Now (iv)  is verified by a direct calculation, 
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x i, 9$(I?)(rJ(q,p; n)U’((b, a, U, R ) - ’ Q ] , ( R - ’ ( ~ - ~ U ) )  
l=-J  

12Rp+ mu - 51’-(bu- a )  (2Rp+ mu- 5 )  - i m (  bo - a )  U 
b 

2m 
-- 

x i 9(1 ( I? ) Z:, ( n ) 9:; ( I? )a (2 Rp + 2 mu - 5 )  
1, U, U = -1 

I1 =exp{i[2(Rq--Rp+a+bu b 
m 

J 
x Z’,,(Rn)Qv(2Rp+2mu-&) 

t’ 2 - 

The conclusion is that there exists a phase-space representation for the description 
of a non-relativistic spinning particle, as a theory of ‘Wigner functions’ over R6 x S2.  
Full details of such a theory for spin are given in [9]; there it is seen that the Z { , ( n )  
are the Wigner functions corresponding to the states I j s ) .  

Remark 1. The family T J  is essentially unique: unicity of the II comes from the 
Stone-von Neumann theorem; in the definition of the A’ a few sign changes could be 
made, but it can be shown that only the definition (3) and (4) make physical sense. 

Remark 2. In the modern approach to phase-space quantum mechanics [14-181 the 
Stratonovich- Weyl correspondence is de-emphasised in favour of the twisted product 
of two functions on phase space, corresponding to the usual product of two operators. 
In that way the theory is formulated autonomously as a calculus of functions on phase 
space. The twisted product, denoted by x, is determined by the condition that 
WA x WB = WAB for all operators A, B. Using the Stratonovich-Weyl correspondence, 
we find 

where LJ(u, U, w )  = Tr(rJ(u)rJ(u)rJ(  w)).  For instance, 
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L”*(u, U, w ) =  16(1+3n. n ’ + 3 n ‘ -  n”+3n”.  n+3Ji i [n ,  n’ ,  n ” ] )  

2i 
x exp(; ( q  p ’  - q’ - p +  q’ - p ” -  q” - p ‘ +  q” p - q * p ” )  

if U = (4, p ;  n ) ,  U = (q ’ ,  p ’ ;  n ’ ) ,  w = (q” ,  p ” ;  n”) .  
The tracial condition becomes 

[ f ( u ) h ( u )  dp’(u) 
R6XS2 
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and the covariance condition implies equivariance of the twisted product: 

(fx h I 8 ( U )  = (f” x h V U )  for all g E 6 (8) 

where f ” ( u ) : = f ( g - ’  U). In fact, (8) is true for the larger group Sp(6; R)>aR6 of 
transformations of phase space (or its twofold covering Mp(6; R)  XR6, to be precise). 
The canonical generators of this group are ‘distinguished’ Hamiltonians, for which the 
quantum dynamics is rendered in the phase space essentially in classical terms. 

Remark 3. Formulae (6) need some justification, as the operators II are not of trace 
class. We intend to show elsewhere in the spirit of [ 191 that they hold in a distributional 
sense. 

Remark 4. Generalisation of the formalism developed here to any finite number of 
particles is straightforward. 

In summary, the Moyal phase-space formalism now provides a self-contained approach 
to non-relativistic quantum mechanics, including both spatial and spin variables, which 
is fully covariant under the Galilei group. 

We are grateful to Jose Carifiena for helpful discussions. 
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